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ABSTRACT

An analysis is developed to account for the effects of
imperfections on the collapse strength of spherical shells.
The analysis is empirical but is based on an engineering
evaluation of recent tests of near-perfect deep spherical
shells and spherical caps. Sixty-two models were machined
with local thin spots and flat spots and subjected to
external hydrostatic pressure. The analysis is in good
agreement with experimental results despite the severity
of imperfections selected to test the analysis. The
limitations of the analysis are discussed and curves showing
the relationship between out of roundness and local radius
are presented to aid the design engineer in establishing
acceptable tolerance limits for fabrication of spherical
shells.

ADMINISTRATIVE INFORMATION

The work described in this report was conducted under the Model

Basin in-house independent research program, Project S-R011 01 O1.
INTRODUCTION

The use of spherical shells to resist uniform external hydrostatic
pressure has increased rapidly in recent years. This increased use
results from the introduction of missiles and other spacecraft and also
from the growing interest in hydrospace.

During the past three years, the David Taylor Model Basin has spent
considerable effort developing design criteria for deep* spherical shells
for hydrospace applications. This effort is primarily experimental.
Machined specimens and specimens manufactured according to feasible large-
scale fabrication procedures are being tested. The effect of initial im-
perfections, residual stresses, boundary conditions, stiffening systems,
and penetrations on elastic and inelastic behavior are being studied.

It became evident early in the program that the collapse strength
of deep spherical shells was critically dependent upon the presence of

*

Here a deep spherical shell is contrasted to a shallow spherical shell
whose height is normally assumed to be less than one-eighth of its base
radius.




initial imperfections, primarily departures from perfect sphericity. How-
ever, no theory or design procedures could be found in the literature which
adequately considered the effects of imperfections on either elastic or
inelastic behavior. Furthermore, the magnitude of initial imperfections

in the test specimens was not measured to the degree of accuracy required
to evaluate the effects on collapse strength.

Because of this lack of design tools with which the designer could
rationally determine the required geometries for practical deep spherical
shells, the Model Basin developed a semi-empirical method for designing
and analyzing initially imperfect spheres. This "engineering type"
analysis is presented in this report together with the test results of

machined models designed to investigate its adequacy.
BACKGROUND

Timoshenko1 summarizes the classical small-deflection theory for
the elastic buckling of a complete sphere as first developed by Zoelly in
1915. This snalysis assumes that buckling will occur at that pressure
which permits an equilibrium shape minutely removed from the perfectly
spherical deflected shape. The expression for this classical buckling
pressure p; may be given as

2 E (b/R)> )
p; = ———— =1.21 E(h/R)" for v = 0.3 (1]

V3 1 - v2)

where E is Young's modulus,
h is the shell thickness,
R is the radius to the midsurface of the shell, and

V is Poisson'!s ratio.

Unfortunately, the very limited data available prior to the current Model
Basin program do not support the linear theory; elastic buckling loads of
roughly one-fourth those predicted by Equation [1] were observed in earlier

tests recorded in the literature.2 Various investigators have attempted

1References are listed on pazs 33,




to explain this discrepancy by introducing nonlinear, large deflection
shell equations. In effect, their expressions for the theoretical

buckling pressures resulting from the nonlinear equations take the same
general form as Equation [1]. However, the elastic buckling coefficients
corresponding to the minimum pressure required to keep an elastic shell in
the post-buckling position are often about one-fourth of the classical
coefficient and thus are generally in fair agreement with the early
experiments., A more complete background on these large deflection analyses
is given in References 2 and 3.

The test specimens used in the earlier tests,z’4

the results of
which have frequently been compared to the theoretical buckling pressures
fof initially perfect spheres, were formed from flat plates. Thus, al=-
though little data are available, it can be assumed that these early
specimens had significant departures from sphericity as well as variations
in thickness and residual stresses. Those specimens which were not
complete spheres also had adverse boundary conditions., Since initial
imperfections affect collapse strength, the comparison of existing theory,
both linear and nonlinear, with the early experiments is not valid. Until
recently,s’6 however, no attempt has been made to theoretically evaluate
the effect of initial imperfections on the collapse strength of deep or
complete spheres.

The large discrepancy between the classical buckling pressure and
the existing experimental data prompted the Model Basin to test machined
shells which more closely fulfilled the assumptions of classical

theory.3"7’8

These tests demonstrated the effects of initial departures
from sphericity together with the normally less serious effects of
variations in thickness, residual stresses, and adverse boundary conditions.
The collapse strength of these shells was about two to four times greater
than the collapse strength of the shells formed from flat plates. By
achieving a maximum 0.9 ratio of experimental collapse pressure to the
classical elastic buckling pressure, these tests lend considerable support
to the validity of Zoelly's small deflection theory for initially perfect
spheres.

The general effect of initial imperfection or unevenness factors

on the elastic buckling coefficient obtained in recent Model Basin tests of

2




deep spherical shells is discussed in Reference 8 and shown graphically

in Figure 1. Figure 1 illustrates that no single buckling coefficient
may be used in Equation {1] to calculate the strength of spherical shells
which have varying degrees of iritial imperfections, This figure also
indicates that although the classical buckling load coefficient is
apparently valid for perfect spheres, it is impossible to manufacture or
measure most spherical shells with sufficient accuracy to justify the use
of the classical equation in design.

b Based on these recent test results, an empirical equation for near-
perfect spheres was suggested which predicts collapse to occur at about
0.7 times the classical pressure. This empirical equation for the elastic

buckling pressure Ps of near-perfect spheres may be expressed as

1.4 B(h/R )2

1 p, = =0.84 E(h/Ro)z for v = 0.3 (2]

’ v3 a - uz)

where the use of the outer radius R0 is dictated by simple load equilib-
i 3 rium, Initially perfect shells may buckle at pressures approaching 43

' percent greater than the pressure given by Equation [2].

l l The inelastic buckling strength of initially perfect spheres was
first investigated by Bijlaard.9 He obtained a plasticity reduction
factor which he applied to the classical elastic buckling equation, His

collapse pressure Pg may be expressed as

E E

2
st h\" _ 2 =
m)(ﬁ) =1,34 VEsEt (h/R)“ for vp = 0.5 (3]
P

where ES is the secant modulus,
Et is the tangent modulus, and

L | up is Poisson's ratio in the plastic range.

Machined deep spherical shells with ideal boundaries which collapsed
at stress levels above the elastic limit of the material have also been

tested at the Model Basin.3’7 For each model tested, Bijlaard's inelastic




buckling theory (Equation [3]) gave collapse pressures higher than the
corresponding experimental collapse pressures. The collapse strength of
those models which failed at stress levels above the proportional limit
were accurately calculated, however, using an empirical formula based on
applying a plasticity reduction factor similar to Bijlaard's to the
empirical Equation [2]. This empirical formula for the inelastic collapse

pressure of near-perfect spheres mey be expressed as

The secant and tamgent modulus used in Equations (3], (4], and [5] are
derived from typical stress=strain curves of the material obtained from
simple compression specimens. In Equation [3], it is assumed on the basis
of tnin-shell theory that the stress oy may be calculated by

01 = e— [5]

In Equation (4], the average stress VG

ditions for all thicknesses is used and may be calculated by

which satisfies equilibrium con=-

2
PR,

ol = —_—
i, (6]
It should be pointed out that Equation [4 ] neglects the change in
Poisson's ratio when going from the elastic range to the plastic range.
This assumption is conservative.

How well empirical Equation [4] works is demonstrated in Figure 2.
The ordinate is the ratio of the experimental collapse pressure to the
classical elastic buckling pressure. The abscissa is the ratio of the
empirical inelastic collapse pressure to the classical buckling pressure.
Both the experimental elastic and inelastic buckling pressures recorded
in References 3, 7, and 8 are plotted in Figure 2 since Equation {4]




reduces to Equation [2] in the elastic range., It is apparent that Equation
[4] adequately predicted the behavior of the machined models.

Since the recent tests show that the discrepancy between the early
experiments and classical small deflection theory can be attributed to
the failure of the experiment to fulfill the rigid theoretical as=-
sumptions, it appears worthwhile to study the effects of imperfections, or
unevenness factors, on both elastic and inelastic behavior. Since most
contributions to the unevenness factor, such as variations in thickness,
residual stresses, boundary conditions, etc. may bz, at least on occasions,
fairly well controlled, the effects of initial departures from sphericity
seem most worthy of investigation.

Until very recently, no theoretical or experimental work had been
done to study tne effects of imperfections on the strength of spherical
shelis., Thompson5 and Wedellsborg6 have recently developed analyses for
the elastic buckling of initially imperfect spheres. Based on a middle
surface imperfection of assumed shape and amplitude, Thompson solved the
nonlinear equation for the maximum buckling pressure. This type of
theoretical approach shows promise of producing the first valid theoretical
elastic analysis for practical spheres and appears worthy of further in-
vestigation., Wedellsborg proposed that the elastic buckling strength of L
imperfect spheres could be calculated on the basis of local curvature.
However, it appears that his analysis would be extremely conservative
for local "dents" and unsafe for large flat spots. No theoretical work
has been conducted on the inelastic buckling strength of initially im-
perfect shells, Prior to the current Model Basin program, no valid ex-
perimental work has been conducted on initially imperfect deep spherical

shells due to insufficient measurements of initial contours.
ANALYSIS {

The strength analysis for initially imperfect spherical shells
with ideal boundaries presented herein is based on observations of earlier 1

Jppllpall First, an

tests of machined models conducted at the Model Basin,
empirical analysis was developed for becth the elastic and inelastic
collapse strength of near=perfect spherical shells with ideal boundaries;

see Equations [2], [4], and [6]. Then tests were conducted to determine
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the relationship between unsupported arc length and the elastic and in-

elastic collapse strength of machined shallow spherical caps with clamped

3,10 The test results of the spherical caps suggested an approach

edges.,
to the strength analysis of initially imperfect spheres which, in essence,
modifies the analysis for near-perfect spheres.

The results of the spherical segment models which failed in the
elastic range are compared in Figure 3 with test results recorded in the

literature?s11713

14-18%
ry.

and with nonlinear symmetric and nonsymmetric theo-
The ordinate is the ratio of the experimental collapse pressure
to the classical pressucre, and the abscissa is the nondimensional param-

eter 6 defined as

L 0.91 L
a a

TR

for v = 0.3 (7]

6 = [3/4 Q - uz)] e

where La is the unsupported arc length of the shell.

Whereas previous experiments recorded in the literature showed a
complete lack of repeatability, the machined segment results followed a
very definite pattem. Since the primary difference between these and
earlier specimens was the magnitude of initial departures from sphericivy,
these results demonstrated the detrimental effects of deviations from
perfect sphericity. These results also demonstrated that a short clamped
segment can be weaker than a longer clamped segment. Although this
phenomenon has been implied by existing theoretical studies, it found no
support in the earlier experiment, It is interesting to note that for the
first time there is good agreement between experiment and theory through-
out the range of shallow spherical shells.

The results of the spherical segment model which failed at stress
levels above the proportional limit of the material OP.L. are presented in
Figure 4. The coordinates are the same as those in Figure 3 except the

empirical inelastic collapse pressure has been substituted fer the

“In private correspondence, the authors were informed by H. Weinitschke
of a programming error in his results reported in Reference 18, The
corrected results obtained by Weinitschke are shown in Figure 3.

Lo




classical elastic pressure in the ordinate. The results are plotted in
families of curves whicii basically represent varying degrees of stability;
shells with the lowest PE/P1 are the most stable. The results demonstrate

that for 6 values greater than approximately 2.2, the detrimental effect
of clamping the edges diminishes as the shells become more stable. /1=~
though the test results discussed thus far have been for near-perfect
models, they provide the basis for the following analysis of deep spher=-
ical shells with initial imperfections.

A rather abstract assumption may be made concerning the effects of
initial imperfections on the basis of the results shown in Figure 4. None
of the collapse pressures for the shells associated with values of
greater than about 2.2 to 2.5 were appreciably greater than that predicted
for complete spheres of the same material and the same thickness to radius
ratio. In slightly different terminology, clamping the edges of the
spherical segments associated with 6 values of 2.2 or greater did not in-
crease their collapse strength., In fact, those shells associated with §
values in the region of 4.5 were weakened by clamping the boundary. Thus,
Figure 4 demonstrates that the collapse of a spherical shell is a local
phenomenon and suggests that collapse strength may be better calculated
on the basis of local geometry over a critical length than on nominal
geometry as has normally been used in the past. Assuming that a critical
length Lc exists which may be associated with a 6 value of 2.2, the ex-

pression for Lc becomes

2.2 Viilh
L = = 2.42 VRl h_ for v = 0.3 (8]
[} /4 a
(3/4 @ - w2) T

where ha is the average thickness over a critical length and R1 is the

local radius to the midsurface of the shell over a critical arc length
associated with a & value of 2,2.

Equations [1], [2], [4), and [6] may be readily expressed in terms of
local geometry by

' 2
Py =1.21 E (ha/Rlo) (9]




2 !
p; = 0.84 E(ha/Rlo) [107 l
2
py = 0.84 VE_E_ (ha/Rlo) [11]

2 3
" ()

’ ]

o] = [12] !

AVG 4{
2R b

where R, 1is the local radius to the outside surface of the shell over a
"0

critical arc length associated with a 6 value of 2.2.
The primes in Equations [9] through [12] simply indicate that the local
geometry is used to calculate the pressures and stresses. Equations [11]
and [12] may be used to calculate the collapse strength of initially
imperfect spheres which collapse in either the elastic or inelastic region
since Equation [11] reduces to Equation [10] in the elastic region.

Since Equations [9] through [12] do not consider the effects of
secondary moments, Equation [12] can be expected to predict the membrane

stress at the center of a "flat spot." The consequence of not considering

—_— [ W_..._q—p-—n—aa.a”...—-s.—‘—odhﬂ‘

secondary moments will be most severe in the region of low ratios of
elastic to inelastic collapse strength, that is, p;/pé ratios of 1.0 to
possibly 2.0. The effect of secondary moments could be empirically

——— ey~

accounted for by adjusting the data presented in Figure 4 to reflect the
rigidity of the boundary conditions. However, it does not appear practical
to do this for typical shells since it is difficult, if not impossible,

to accurately describe the boundary condition supporting the local im-
perfections of critical length.

The above analysis assumes the absence of residual stresses, mis-
match, and adverse boundary conditions and penetrations. It also assumes
that the shell is loaded by only hydrostatic pressure and not by additional
local static loads or dynamic loads of any kind.

Equations [10] through [12] are essentially "engineering type"
solutions and are not presented as a theoretical treatment of the strength
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of imperfect spherical shells. In this regard, it is highly desirable to
develop a means by which the analysis may be readily applied to the design
and evaluation of practical structures. The basic problem in applying
the analysis is that it is necessary to determine the local radius over

a critical arc length. One of the simplest ways to do this is to express
the local radius in terms of deviations from a nominal radius or in terms
of out-of-roundness. Figure 5 shows the assumed relationship between
deviations from the nominal radius §, out-of-roundness A, and local radius
; over a critical arc length for a Poisson's ratio of 0.3. By simple

JE geometric relationships it can be shown that

/R (1 -cose) - Rl/R (1 - cos a)

A = = (13]
a ha/ R ha/R

By assuming values for R, ha’ and Rl/R’ c. may be calculated by

La/ 2

= =1, 1
a 1.21 ha/Rl (14]

B s (Atemmma e aeeenanmatin, o anlammachs Snasnetel

Ry

and ¢ may be calculated by

—_ a——-

/
cos ¢ = [1 - (Rl/R)z (1 - cosz a)]l : 15]

The results of Equation [13] are presented graphically in Figure 6 for
two rather extreme values of ha/R' Very significant increases in local

——— ey

radius are obtained for relatively small deviations from perfect spheric-
ity. For example, the local radius is almost 1.7 times the nominal
radius for a A/ha of 0.5.

The effect of initial deviations from sphericity is extremely im-
portant in the elastic buckling case since the local radius appears in
the appropriate equation to the second power; see Equation [10]. To
demonstrate this effect in more familiar terminology, the elastic buckling
coefficient K for v of 0.3 is plotted against A/ha in Figure 7. Here
Equation [10] may be rewritten in terms of nominal radius as

—— ™ ..
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p; =KE (h&/RQ)2 [16]

Considering the effect of initial imperfections is also very important
when calculating the inelastic buckling strength where the collapse
pressure is primarily a function of the average stress level. The average
stress is approximately proportional to the local radius; see Equations
{11] and 12].

It should be remembered that A is associated with a critical arc
length which may be calculated using Equation [8]. In practice, it is
often desirable to define the critical length in terms of critical chord
length Lcc' The ratio of Lcc/R may be easily obtained for various values
of A/ha and ha/R by use of the graph presented in Figure 8.

EXPERIMENT

DESCRIPTION OF MODELS

The three series of models were designed to study the effect of
local imperfections on the hydrostatic collapse strength of deep spherical
shells and consisted of the following:

1. Series FS consisted of 36 models of hemispherical shells each
bounded by a ring-stiffened cylinder designed to provide conditions of
membrane deflection and no rotation to the edge of the hemisphere. A
local flat spot was present in the apex of each henisphere.

2. Series VT consisted of 12 models of hemispherical shells each
bounded by membrane cylinders. A local thin spot was present in the apex
of each hemisphere.

3. Series ET consisted of 14 models of spherical segments which
clamped edges. A local thin spot was present in the apex of each segment.

Series FS and VT were designed to study both the elastic and in-
elastic buckling strength of initially imperfect spherical shells. Thus,
the ratios of shell thickness to radius were selected to study relatively
stable as well as unstable configurations. Series ET was designed to
study only the elastic buckling strength of spherical shells with local
thin spots.

11

b e b

=

SR S IO 2200 ol 0 ok S




o s A

e A - i e e e ————.

All models in each series were machined from 7075-T6 aluminum bar

stock with a nominal yield strength of 80,000'psi. Young's modulus E for

NP AR e 0 S

the material, as determined by optical strain gage measurements, was
10.8 x 106 psi. A Poisson's ratio v of 0.3 in the elastic range was
assumed. Tables 1-3 give the model dimensions for each series, and Figure
9 shows representative ratios of [ES Et]l'/2 to E as a function of uniaxial

compressive stress for the material used in each model.

Series FS Models

Series FS consisted of 36 machined models of hemispherical shells
with local flat spots. The flat spots, which were machined in the apex
of each model, had an included angle of 10 deg for Models FS~1 through
FS-9, 20 deg for Models FS-10 through FS-27, and 30 deg for Models FS-28
through FS-36. The local radius of curvature was held constant for each
flat spot and was 1.15 times the nominal radius for Models FS=10 through
FS-18 and 1.4 times the nominal radius for all remaining models.

Each model was machined in an identical manner. The interior con-
tours were machined by use of form tools, the exterior contours by
supporting the inside contours on a mating mandrel and by generating the
outside surface using a lathe with a ball~turning attachment.

The wall thicxness of each model was measured using a small support-
ball and a dial gage. The total variation in measured wall thickness was
normally less than 1 percent of the shell thickness. The flat spot con=~
tours were checked by comparing measured deviations from sphericity at the
center of the flat spots with calculated values. Excellent agreement was
obtained for each model.

Series VT Models

Series VT consisted of 12 machined models of hemispherical shells
with local thin spots at the apex. The models were machined in a manner
identical to that used for Series FS. The thin spots were obtained by
removing material on the exterior surfaces and had chord lengths from about ¢
0.17 to 1.0 times the radius. i
The wall thickness of each model was measured at the apex and at :
the edge of the thin spot by use of a support-ball and a dial gage. Un- E

fortunately, the initial contours were not measured.
12




i Series ET Models

; ! Series ET consisted of 14 machined models of spherical segments 5
I with local thin spots at the apex. The arc length of the segments was of ;
sufficient length to disregard the effect of the clamped edges.3 The %
thickness to radius ratio was selected to ensure collapse in the elastic 5

& AR 4 8

region. The interior contours were generated using a specially designed

tool.8 The exterior contours were obtained by supporting the inside con-
f‘ tours by a mating mandrel and by generating the outside surface using a
lathe with a ball~turning attachment.,

The variation in local inside radii was measured by pivoting a dial
gage clamped to the special tool for generating inside spherical surfaces.
Representative measurements are shown in Table 3. These measurements
indicate that the interior contours deviated from perfect sphericity and

) 3*
suggest that some residual stresses were present in the models.

TEST PROCEDURE AND RESULTS

Each model was tested under external hydrostatic pressure. Pressure

’ ! was applied in increments and each new pressure level was held at least 1

; minute. The final pressure increment was always less than 2 percent of f

{ 3 the maximum pressure. Every effort was made to mimimize any pressure surge f

: when applying pressure. f
§ Tables 4~6 present the experimental collapse pressures. Photographs {

s of representative models after collapse are shown in Figure 10.
COMPARISON OF ANALYSIS WITH EXPERIMENT

i Figure 11 compares the experimental results with the analysis de=-

: veloped in this report. The ordirate is the ratio of the experimental col-

! lapse pressure to the modified classical pressure pi as presented in Equation
i [9]). The abscissa is the ratio of the empirical inelastic buckling pres-

: sure pé to pi. The abscissa, therefore, is a measure of the stability of
.] f a spherical shell, i.e., the lower values of pé/pi are the most stable.

3
The models could not be stress relieved since 7075-T6 aluminum loses
its strength when subjected to temperatures sufficient for stress relieving.

13
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The comparison between experiment and theory is good, particularly for
the more stable shells. The scatter shown for the less stable shells
requires a closer examination of geometries involved.

The experimental results of the flat spot series models are compared
with the imperfection analysis is presented in Figure 12, The abscissa is

the nondimensional parameter g defined as

L,
1/4 i
B = [3/4 (1 - v?)] S (17]

VR, By

where Li is the midsurface arc length of the im-
perfection,
RL is the radius of the midsurface of the im-
perfection, and
hMIN is the minimum measured thickness of the

imperfection.

The ordinate is the ratio of the experimental collapse pressure to the
pressure predicted by Equation [11]. The thickness ha was the measured
thickness at the center of the flat spot. For those models with 8 values

greater than 2.2, R +h, (see Table 1 and comments on

1o 2
measurements after fabrication). For those models with p values less than

is equal to R

2.2, R, was determined by passing a radius through a point on the mid-
surface of the boundary spherical shell and through the point at the mid-
surface at the center of the flat spot, over an arc length associated with
a 6 value of 2,2. Model results are presented in terms of margins of
stability. Those models with ratios Rz/!RI of 1.15 are marked with an
asterisk. All other models had RZ/RI ratios of 1.40.

For the wide range of B values investigated, Figure 12 indicates
that the comparison between experiment and analysis is good. With the
exception of eight model tests, all of the models coliapsed at pressures
within approximately 10 percent of predictions. Two things characterize
those model results which fall more than 10 percent below the predicted
pressures., All of these models had margins of stability of less than 1.2
and ratios RZ/RI of 1.40, Figure 4 indicates that secondary moments, which

14
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are not considered in the imperfection analysis, have a significant effect
on the collapse strength of the less stable shells. As indicated in Table
1, the flat spot models had abrupt changes in curvature. This would not
be true for imperfections in most practical shells. Thus the flat spots
investigated by this series of models were severe. Another significant
result of the flat spot series tests is that the collapse strength of all
models with A values less than approximately 5 percent of the thickness
could be predicted by Equation [2]. Thus, the collapse strength of

spherical shells whose out=-of-roundness A is less than about 2 to 3 percent

of the shell thickness and whose strength is not affected by residual
stresses, variations in thickness, adverse boundary conditions or other
factors may be adequately calculated by the empirical formula developed
for near-perfect spheres.

The results of the ET series and VT series tests are plotted in
Figure 13, The abscissa is the nondimensional parameter P as defined by
Equation [17]. Again the ordinate is the ratio of the experimental
collapse pressure to that predicted by Equation [11]. For those models
with B values greater than 2.2, R1 was determined from the point at the
midsurface at the center of the thin spot to a point at the midsurface
located at a distance LC/Z from the center. For the ET series models,
measurements made after fabrication were taken into consideration in the
determination of Rlo. For the VT-series, nominal model dimensions were
used (see comments under Description of Models). The thickness ha was the
average of the thicknesses at these two points. The same procedure was
followed in determining R, and ha for those models with g values less
than 2.2. The thickness ha for this case was the average of the thickness
at the center of the thin spot and the thickness of the boundary spherical

shell. Thus, in all cases, the determination of the critical local geometry

was made over an arc length associated with the critical value of g.
Considering the severity of the imperfections machined in these

models, the agreement between the analysis and experiment is quite good.

Thicknesses at the center of the thin spots ranged from approximately S50

to 80 percent of the thickness at the edge, and all of the material removed
for the thin spot was taken from one side of the shell, causing significant

changes in curvature. In practice, thin spots would be much less severe.

15




In'addition, most of the models had relatively low margins of stability.
As indicated in Figure 13, only one model failed at a pressure more than
10 percent below that predicted by the analysis. Many of the models
failed well above predictions. The collapse of those models with p values
greater than approximately five were influenced by the nonsymmetric mode
of failure. Whereas thicknesses were averaged over the center portion of
these thin spots, the models failed in the nonsymmetric mode at the
boundary where thicknesses were significantly greater; see Figure 10,
Model ET-13.

Residual stresses were present in the ET sefies as demonstrated by
their failure to hold their contour during the last stage: of the machining
process., Since measurements were not taken on the VI series models, it is
rossible that residual stresses were present. It is difficult if not
impossible to determine the effecﬁs of residual stresses on the observed
collapse pressures.

Several important factors are not as yet considered by the imper-
fection analysis presented in this report. The analysis does not consider
the effects of secondary moments or adverse boundary conditions. The
importance of these effects has been mentioned in discussing the model
results and is shown in Figure 4. For relatively unstable shells, the
reduction in collapse strength due to adverse boundary conditions is
significant. As the shells become more stable, however, these effects
diminish. Another factor not considered by the analysis is the effect of
residual stresses on collapse strength., It would be extremely difficult
to take into account theoretically the residual stresses in a shell
fabricated according to practical large=-scale procedures since the
residual stresses would be present in the shell in some random, unpre-
dictable pattern. The best approach to this problem appears to be em-
pirical. The Model Basin has conducted an experimental parametric study
of large pressed and welded hemispheres in the fabricated and in the
stress-relieved condition. The elastic behavior of thzse hemispheres
agrees well with the imperfection analysis reported here. The collapse
pressures achieved for the as-fabricated and stress-relieved shells follow
very definite patterns when the imperfection analysis is applied. A report
on the results of these tests is in preparation.
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; i Because of the urgent need for rational design criteria for j
spherical shellé, the results reported to date have had an empirical :
bias. Additional programs which include theoretical as well as experi-
mental treatments are currently being conducted at the Model Basin under
the sponsorship of the Bureau of Ships. The effects of flat spots,
boundary conditions, mismatch, penetrations, stiffening systems, residual

[ stresses, and laminated construction on the elastic behavior and collapse

; strength of spherical shells are being studied. Parametric model studies
of practical shells of new materials are also being conducted. It remains
clear that the presence of initial imperfections must be considered in
the formulation of any large deflection analysis before such analysis can
be expected to quantitatively predict the collapse strength of practical
spherical shells,

The imperfection analysis presented in this report has been verified

¥ | by the results obtained to date from these studies. Briefly, the 1

analysis involves the determination of the critical local geometry of a

spherical shell over an arc length associated with a 6 value of 2.2 and

b the use of this geometry and not nominal geometry in Equations {11] and

i [12). In analyzing a practical spherical shell, this requires an accurate

determination of the contours of the shell. Local radii may be determined {

from these contour measurements with the aid of Figure 6. Thickness
measurements must then be taken and correlated with the contour measure-
ments to determine the critical value of ha/Rl . From the design stand-
point, a minimum thickness must be assumed and acceptable tolerances on
shape must consic~r realistic fabrication techniques and the effects of

out-of-roundness on strength.
CONCLUSIONS

1. Equation [11] may be used to adequately calculate the effects of initial
departure from sphericity and thickness variations on elastic and inelastic
collapse strength. g

2. The collapse of spherical shells is primarily a local phenomenon and is
therefore critically dependent on local gecmetry.
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3. Equation [4] may be used to adequately calculate the collapse strength
of near-perfect spherical shells whose out=of-roundness A is less than f |
about 2 to 3 percent of a shell thickness and whose strength is not

affected by residual stresses, variations in thickness, adverse boundary

i
conditions, or other factors.
* | 4. The presence of initial imperfections must be considered in the form-
_ ulation of any large deflection analysis vefore such analyses can be ex-
[ : pected to quantitatively predict the collapse strength of practical spherical
shells.
3
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Figure 1 - Effect of Initial Imperfections on the Elastic
Buckling Coefficient for Spherical Shells
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TABLE 1

Series FS Model Dimensions

106"
L————- 2.450" ———"l
voder | hy .hz @ .“2 .b ' 2 2 .no . 2‘11o ¢ | Number
in, in, deg. in. in. in. in. in. of "frsn
FS- 1 | 0.0061 { 0.0062 10 1,138 | 0.022 F0.044 | 1.638 { 1.688 4
FS- 2 | 0.0064 | 0.0064 10 1.138 | 0.022 | 0.044 | 1.638 | 1.688 4
FS- 3 | 0,0104 | 0.0104 10 1,138 | 0,028 | 0.055 | 1,648 | 1,702 4
FS- 4 | 0.0J04 | 0.0104 10 1,138 | 0,028 | 0,055 | 1.648 | 1,702 4
FS- 5 | 0,062 | 0.0)62 10 1,138 | 0,079 | 0.079 | 1,661 j 1.751 3
FS- 6 | 0.059 | 0.0161 10 1,38 | 0.079 | 0.079 | 1.661 | 1,751 3
FS~ 7 | 0,0247 | 0.0249 10 1,138 | 0.080 | 0.090 | 1.683 | 1.827 3
FS~ 8 | 0.0333 | 0.0400 10 1,138 | 0.115 | 0,115 | 1.717 | 1.967 2
FS~ 9 | 0.0694 | 0.0696 10 1,138 | 0.154 | 0.154 | 1.789 | 2.338 2
FS~10 | 0,0062 | 0.0052 20 0.934 | 0.022 | 0.044 | 1.638 | 1.688 4
FS~11 { 0,0063 | 0.0063 20 0,934 | 0.022 | 0.044 | 1.638 | 1.688 4
Fs~12 { 0,0101 | 0.0101 20 0.934 | 0.028 { 0.055 | 1.b48 | 1,702 4
FS~13 | 0.0102 | 0.0102 20 0.934 | 0.028 | 0.055 | 1.648 | 1,702 4
FS=14 } 0.0159 | 0.0161 20 0.934 | 0.079 { 0.079 | 1.061 | 1,751 3
FS~15 | 0.0153 | 0.0160 20 0,934 | 0.079 { 0.079 | 1.661 | 1,751 3
FS=16 | 0.0250 | 0.0250 20 0,934 | 0.090 | 0,090 ! 1.683 | 1.827 3
FS~17 | 0.0398 | 0.0399 20 0.934 | 0.115 | 0,115 | 1.717 | 1.967 2
FS~18 | 0.0694 | 0.0697 20 | 0.924 | 0.154 [ 0.154 | ).789 | 2.338 2
FS~19 } 0.0050 | 0.005). 20 1,138 | 0.022 | 0.044 | 1.638 | 1.688 4
FS=20 | 0.0061 | 0.006). 20 1.138 | 0,022 | 0.044 | 1.638 | 1.688 4
FS-21 § 0.0102 { 0.0102 20 1.138 | 0.028 § 0.055 | 1.648 | 1.702 4
FS-22 | 0.0104 | 0.0103 20 1.138 | 0,028 ] 0,055 | 1.648 | 1.702 4
FS-23 { 0,0158 | 0.0160 20 1,138 | 0.073 | 0.079 ] 1.661 | 1.751 3
FS-24 | 0.0157 | 0.016) 20 1.138 | 0,079 | 0,079 | 1,661 {1,751 3
F§-25 | 0.0251 | 0.025) 20 1.138 | 0,090 | 0.090 | 1.683 | 1,827 3
FS~26 | 0.0400 | 0.0400 20 1.138 { 0.115 }0.115 | 1,717 | 1,967 2
FS~27 | 0.0698 | 0.0699 20 1.138 { 0.154 | 0.154 | 1.789 | 2.338 2
FS~28 | 0.0061 | 0.0061 0 1,138 | 0,022 | 0.044 | 1.638 | 1.688 4
FS$=29 | 0.0063 | 0.0063 30 T 138 | 0,022 | 0,044 }1.638 | 1,688 4
FS~3 | 0.0104 | 0.0104 0 1.138 | 0,028 | 0.055 | 1.648 | 1,702 4
FS~31 | 0.0104 | 0.0104 X 1.138 | 0,028 | 0.055 § 1.648 | 1,702 4
FS-32 ] 0.016) | 0.0163 30 1.138 ] 0,079 ] 0,079 | 1.661 | 1.751 3
FS-33 { 0.01%8 | 0.0159 3 | 1.138 | 0.079 | 0.079 j 1.661 | 1.751 3
FS-34 | 0.0248 | 0.0248 3 { 1,138 | 0,090 | 0.09 | 1.683 | 1.827 3
FS-35 | 0.0387 | 0.0387 30 § 1,138 | 0.115 | 0.115 | 1.717 { 1.967 2
r$-3 | 0.0700 | 0.0701 3 | 1.138 | 0,254 j0.15¢ | 1.789 | 2,338 2
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TABLE 2

Series VT Model Dimensions

a
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e 2.450" >

*TAKEN AT EDGE OF THIN SPOT
otel b h, d R, b 2 2R, [ 2R,

in, in, in. in. in. in, in, in,
V-1 | 0.0049 | 0.0067 | 0.135 | 1.860 { 0.029 | 0.058 | 1.649 | 1.72]
VI=- 2 | 0,0049 | 0,0069 | 0.144 | 1.860 | 0.029 | 0.058 | 1.649 | 1.72]1
VI- 3 | 0.0048 | 0.0064 | 0.170 | 1.224 | 0.029 | 0.058 | 1.649 | 1.721
VT- 4 | 0.0048 | 0,0065 | 0.169 | 1.224 | 0.029 | 0.058 | 1.649 | 1,721
VI- 5 | 0.0048 | 0.0064 | 0.286 | 0.916 | 0.029 | 0.058 | 1.649 | 1.721
VT- 6 | 0.0048 | 0.0064 | 0.308 | 0.916 | 0.029 | 0.058 | 1.649 | 1.721
vr- 7 | 0.0158 [0.,0212 | 0.245 | 1.833 | 0.080 | 0.080 | 1.671 | 1.783
Vr- 8 { 0.0148 | 0,0205 | 0.311 | 1.250 | 0.080 | 0.080 | 1,671 | 1.783
VI- 9 | 0.0149 | 0.0204 | 0.565 ! 0.931 J 0.080 } 0.080 | 1.671 ] 1.783
vI-10 | 0.0386 |0.0512 | 0.396 | 1.831 | 0.129 | 0,129 | 1.741 | 1.990
V=11 | 0.0390 | 0.0517 |0.599 | 1.294 | 0.129 | 0.129 | 1,741 | 1.990
Vr=12 | 0.382 0.0515 | 0.846 | 0,954 | 0.129 | 0.129 | 1.741 { 1.990
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TABLE 3

Series ET Model Dimensions

Fa

min

‘ "
1
:
—
®* TAKEN AT EDGE OF THIN SPOT
ot b h, d | Ry MR, =R, - 2.0000
in. in. in, §=0° [y =2° [y =4° | y=6°
ET-1 | o0.0087 | 0.0153 | 0.25 | . | 0.0040 | 0.0037 | 0.0018 | 0.0011
ET- 2 | 0.0107 | 0.0158 | 0.29 | 7.87 | 0.0040 | 0.0040 | 0.0030 | 0.0025
ET- 3 [ 0.0098 | 0.01s5 | 0.30 | 6.02 | 0.0037 | 0.0035 | 0.0031 | 0.0028
ET- 4 | 0.0104 | 0.0157 | 0.33 | 4.68 | 0.0015 | 0.0015 | 0.0015 | 0.0015
[ ET- 5 | 0.0073 | 0.0155 | 0.37 | 3.66 | 0.0050 | 0.0050 | 0.0035 | 0.0027
ET- 6 | 0.0107 | 0.0158 | 0.41 | 3.17 | 0.0025 | 0.0020 | 0.0014 | 0.0010
ET- 7 | 0.0103 | 0.0156 | 0.49 [ 2.69 | 0.0035 | 0.0025 | 0.0015 | 0.0010
ET- 8 | 0.0090 | 0.0135 | 0.57 | 2.47 | 0.0040 | 0.0032 | 0.0027 | 0.0022
ET- 9 | 0.0115 | 0.0159 | 0.65 | 2.35 | 0.0025 | 0.0015 | 0.0010 | 0.0008
Ef-10 | 0.0114 | 0.0152 | 0.73 | 2.27 | 0.0034 | 0.0032 | 0.0030 |0.0028
ET-11 | 0.0115 | 0.0157 | 0.81 |2.21 | 0.0020 | 0.0020 | 0.0018 | 0.0015
ET-12 | 0.0085 | 0.0150 | 0.97 | 2.17 | 0.0012 | 0.0010 | 0.0006 | 0.0002
ET-12A| 0.0085 | 0.0155 | 0.93 | 2.29 | 0.0000 [ 0.0001 [ 0.0002 [0.0004
ET-13 | 0.0115 | 0.0158 | 1.29 |2.09 | 0.0030 | 0.0029 | 0.0024 | 0.0010
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TABLE 4

Summary of Geometric Parameters and Collapse Pressures
for Series FS Models

Model pexp R10 ha pé = Qi \Es?t (ha./R1 )2 pexp/pFl: B =0.91 Li
psi in, in. psi ° |/ RL ha
FS=1 328 | 0.99 | 0.0061 354 0.93 1.53
FS~ 2 385 | 0.97 | 0.0064 398 0.97 1.50
FS- 3| 1,295 | 0.92 | 0.0104 1,190 1.09 1.18
FS= 4 | 1,230 | 0.92 ] 0.0104 1,190 1.03 1.18
FS= 5| 2,65 | 0.89 | 0.0162 2,470 1.07 0.95
FS-6 | 2,625 | 0.89 | 0.0159 2,390 1.09 0.96
FS~ 7 | 4,280 | 0.86 | 0.0247 4,125 1.09 0.77
FS- 8 | 7,200 | 0.86 | 0.0399 6,960 1.03 0.62
FS- 9 {13,100 | 0.89 | 0.0694 12,280 1.07 0.49
FS$~10 388 | 0.94 | 0.0062 397 0.98 3.45
FS-11 416 | 0.94 | 0.0063 410 1.01 3.43
FS-12 | 1,050 | 0.95 | 0.0101 1,013 1.04 2.66
FS=13 | 1,040 | 0.95 | 0.0102 1,030 1.01 2.67
FS=14 | 2,375 | 0.94 | 0.0159 2,235 1.06 2.11
FS-15 ] 2,385 | 0.94 | 0.0159 2,230 1.07 2.11
FS=16 | 4,215 | 0.94 | 0.0250 4,025 1.05 1.68
FS~17 | 7,110 | 0.91 | 0.0398 6,836 1.04 1.35
FS~18 (12,900 | 0.91 [ 0.0694 12,110 1,07 1.02
F5=19 153 | 1.14 | 0.0050 175 0.87 3.38
F$=20 260 | 1.14 | 0.0061 260 1.00 3.06
FS=21 678 | 1.15 | 0.0102 718 0.94 2.37
FS=22 718 | 1.15 | 0.0104 747 0.96 2.35
FS-23 | 1,830 | 1.08 | 0.0158 1,850 0.99 1.88
FS-24 | 1,820 | 1.07 ]| 0.0157 1,810 1.01 1.89
FS-25 | 3,880 | 1.00 | 0.0251 3,640 1.07 1.50
FS=26 | 7,125 | 0.96 | 0.0400 6,410 1.11 1.22
FS~27 (12,950 | 0.65 | 0.0698 11,740 1.10 0.9¢
FS=-28 228 [ 1.14 { 0.0061 260 0.88 4.59
FS=29 230 | 1.4 | 0.0063 276 0.83 4.5
F$-30 535 | 1.15 | 0.0104 747 0.72 3.52
FS-31 525 | 1.15 | 0.0104 747 0.70 3.52
F5-32 | 1,325 | 1.15 | 0.0161 1,700 0.78 2.84
FS~33 |1,300 { 1.15 | 0.0158 1,675 0.78 2.86
FS-34 | 2,850 | 1.16 | 0.0248 3,025 0.94 2.30
FS-35 | 5,800 | 1.08 | 0,0387 5,250 1.10 1.85
Fs-36 {12,000 1.01 | 0,0700 10,950 1.10 1.41
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TABLE 5

Summary of Geometric Parameters and Collapse
Pressures for Series VT Models

Model | Pexp “10 h, Pg = 0'84@(“:/“10)2 Pexp/PE | 8 =091 L;

psi | in, in, psi VR hmin
Vi=1 335 | 0.99 | 0,0058 311 1.00 1.95
VI=- 2 | 35 | 1.00 [ 0.0059 312 1.03 2.08
VI~ 3 315 | 0.98 | 0.0056 298 1.06 2.48
VI-4 | 345 | 0.99 | 0.0057 298 1.16 2.47
"VI=- 5 | 275 { 0.87 | 0.0053 300 0.90 4.18
VT=~ 6 290 | 0.86 | 0.0052 306 0.95 4.51
VI~ 7 {2,660 | 0.99 | 0.0185 2,665 0.95 1.96
VI- 8 [2,200 { 1.01 | 0.0177 2,315 0.90 2.59
V-9 [2,365 | 0.88 | 0.0163 2,335 0.97 4.75
VI-10 7,690 | 1.01 | 0.0449 6,815 1.10 2.03
VI=11 |7,150 | 0,97 | 0.0443 6,765 1.05 3.10
VI-12 7,460 | 0.91 | 0.0416 6,675 1.11 4.53

TABLE 6
Summary of Geometric Parameters and Collapse
Pressures for Series ET Models

Model Pexp R10 h, pE' = (ol VE—S}‘:(ha/Rlo) : Pm/pé B =091,

psi | in, in, psi R hm‘.n
ET-1 377 |} 2,05 | 0.0133 383 0.98 1.72
ET=- 2 360 | 2.21 | 0,0141 370 0.97 1.81
ET= 3 308 | 2,39 | 0.0135 290 1.10 1.95
ET- 4 310 |2.53 | 0.0138 270 1.5 2.07
ET=5 268 | 2.44 | 0,0118 217 1.26 2.78
ET=.6 365 12.22 | 0,0133 326 1.12 2,56
ET= 17 3% {1.78 | 0,0117 387 0.90 3.10
ET=- 8 246 |1.80 | 0.0097 262 0.94 3.86
ET=- 9 357 |1.80 | 0.0122 412 0.87 3.92
ET=10 295 |2.01 { 0.0119 320 J.92 4,40
ET-11 378 | 2.02 | 0.0119 314 1.19 4.90
ET=12 282 11.92 | 0.0089 195 1.46 6.80
ET=12A 223 }2.29 | 0,0090 138 1.62 6.50
ET-13 460 11.79 | 0.0117 386 1.19 7.7
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